ПЛАН УЧЕБНОГО ЗАНЯТИЯ

по дисциплине «Математика»

дата 06.02.2024

Новый материал (конспект в рабочую тетрадь!!!)

Тема: «Нахождение наибольшего и наименьшего значений функции»

Если в задаче требуется найти максимальное или минимальное значение функции f(x) на отрезке [a;b], выполняем следующие действия:

- 1. Найти производную функции: f '(x).
- 2. Решить уравнение f''(x) = 0
- 3. Из полученного набора корней вычеркнуть все, что лежит за пределами отрезка [a; b]. Оставшиеся числа обозначим $x_1, x_2, ..., x_n$ их, как правило, будет немного.
- 4. Подставим концы отрезка [a; b] и точки $x_1, x_2, ..., x_n$ в исходную функцию. Получим набор чисел f(a), f(b), $f(x_1)$, $f(x_2)$, ..., $f(x_n)$, из которого выбираем наибольше или наименьшее значение это и будет ответ.

Задача 1. Найти наибольшее значение функции $y = x^3 + 3x^2 - 9x - 7$ на отрезке [-5; 0].

Решение. Для начала найдем производную:

$$y' = (x^3 + 3x^2 - 9x - 7)' = 3x^2 + 6x - 9.$$

Затем решаем уравнение: $y' = 0 \Rightarrow 3x^2 + 6x - 9 = 0 \Rightarrow ... \Rightarrow x = -3$; x = 1.

Вычеркиваем корень x = 1, потому что он не принадлежит отрезку [-5; 0].

Осталось вычислить значение функции на концах отрезка и в точке x = -3:

$$y(-5) = (-5)^3 + 4 \cdot (-5)^2 - 9 \cdot (-5) - 7 = -12;$$

$$y(-3) = (-3)^3 + 4 \cdot (-3)^2 - 9 \cdot (-3) - 7 = 20;$$

$$y(0) = 0^3 + 4 \cdot 0^2 - 9 \cdot 0 - 7 = -7.$$

Очевидно, наибольшее значение равно 20 — оно достигается в точке x = -3.

Ombem: $\max_{[-5;0]} y = y(-3) = 20$

Задача 2. Найдите наименьшее значение функции $y = x^3 - 3x + 4$ на отрезке [-2;0].

Решение. Найдём производную заданной функции:

$$(x^3 - 3x + 4)' = 3x^2 - 3$$

Найдем нули производной:

$$y' = 0 \implies 3x^2 - 3 = 0 \implies x^2 = 1$$
$$x_1 = -1 \qquad x_2 = 1$$

Указанному в условии интервалу принадлежит точка x = -1.

Вычисляем значения функции в точках -2, -1 и 0:

$$y(-2) = (-2)^3 - 3(-2) + 4 = 2$$
$$y(-1) = (-1)^3 - 3(-1) + 4 = 6$$
$$y(-2) = 0^3 - 3 \cdot 0 + 4 = 4$$

Наименьшее значение функции равно 2 — оно достигается в точке x = -2.

Omeem: $\min_{[-2;0]} y = y(-2) = 2$

Задача 3. Найдите наибольшее и наименьшее значение функции $y = x^3 - 6x^2$ на отрезке [–3;3].

Решение. Найдём производную заданной функции:

$$(x^3 - 6x^2)' = 3x^2 - 12x$$

Найдем нули производной:

$$y' = 0 \implies 3x^2 - 12x = 0 \implies 3x(x - 4) = 0$$

 $x_1 = 0 \qquad x_2 = 4$

Указанному в условии интервалу принадлежит точка x = 0.

Вычисляем значения функции в точках -3, 0 и 3:

$$y(-3) = (-3)^3 - 6(-3)^2 = -81$$
$$y(0) = 0^3 - 6 \cdot 0^2 = 0$$
$$y(3) = 3^3 - 6 \cdot 3^2 = -27$$

Наименьшее значение функции равно -81 — оно достигается в точке x = -3.

Наибольшее значение функции равно 0 — оно достигается в точке x=0.

Omeem:
$$\max_{[-3:3]} y = y(-3) = -81$$
, $\min_{[-3:3]} y = y(0) = 0$

Конспект отправляем на электронную почту oles.udalova@yandex.ru